Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks)
نویسندگان
چکیده
Group equivariant and steerable convolutional neural networks (regular and steerable G-CNNs) have recently emerged as a very effective model class for learning from signal data such as 2D and 3D images, video, and other data where symmetries are present. In geometrical terms, regular G-CNNs represent data in terms of scalar fields (“feature channels”), whereas the steerable G-CNN can also use vector or tensor fields (“capsules”) to represent data. In algebraic terms, the feature spaces in regular G-CNNs transform according to a regular representation of the group G, whereas the feature spaces in Steerable G-CNNs transform according to the more general induced representations of G. In order to make the network equivariant, each layer in a G-CNN is required to intertwine between the induced representations associated with its input and output space. In this paper we present a general mathematical framework for G-CNNs on homogeneous spaces like Euclidean space or the sphere. We show, using elementary methods, that the layers of an equivariant network are convolutional if and only if the input and output feature spaces transform according to an induced representation. This result, which follows from G.W. Mackey’s abstract theory on induced representations, establishes G-CNNs as a universal class of equivariant network architectures, and generalizes the important recent work of Kondor & Trivedi on the intertwiners between regular representations. In order for a convolution layer to be equivariant, the filter kernel needs to satisfy certain linear equivariance constraints. The space of equivariant kernels has a rich and interesting structure, which we expose using direct calculations. Additionally, we show how this general understanding can be used to compute a basis for the space of equivariant filter kernels, thereby providing a straightforward path to the implementation of G-CNNs for a wide range of groups and manifolds. 1 ar X iv :1 80 3. 10 74 3v 1 [ cs .L G ] 2 8 M ar 2 01 8
منابع مشابه
Interactions as conformal intertwiners in 4D QFT
In a recent paper we showed that the correlators of free scalar field theory in four dimensions can be constructed from a two dimensional topological field theory based on so(4, 2) equivariant maps (intertwiners). The free field result, along with results of Frenkel and Libine on equivariance properties of Feynman integrals, are developed further in this paper. We show that the coefficient of t...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018